The use of satellite data and geospatial intelligence for flood risk assessment at UN-SPIDER RSO in Ukraine

Nataliia Kussul<sup>1,3</sup>, Andrii Shelestov<sup>1,2,3</sup>, Sergii Skakun<sup>1,3</sup>, Oleksii Kravchenko<sup>1,2</sup>

<sup>1</sup>Space Research Institute NASU-NSAU

<sup>2</sup>National University of Life and Environmental Sciences of Ukraine

<sup>3</sup>National Technical University of Ukraine "KPI"



#### Content

- Flood hazard mapping using satellite data
- Deforestation mapping in Ukraine
- SICH-2 new Ukrainian Earth remote sensing satellite



#### **Importance**

- Flood management has shifted from protection against floods to managing the risks of floods.
- In Europe, this shift is reflected in the Flood risk directive (FRD) of October 2007 (2007/60/EC; FRD).
- The FRD requires EU Member States to undertake a preliminary assessment of flood risks and, for areas with a significant flood risk, to prepare flood hazard and flood risk maps and flood risk management plans.



### Measuring "flood risk"

### Risk = F(Hazard, Vulnerability)

- A popular approach
  - Risk = the probability of each possible flood event per year x the consequences of that event
  - Simple risk measures:
    - average annual economic damage (AAD)
    - average annual number of casualties (AAC)
  - Problems
    - regular flooding with limited consequences and exceptional flooding with huge consequences may have the same AAD, but in practice they differ significantly: it is possible to cope with the first type but not with the second one



#### Flood Hazard Mapping

- Flood modeling
  - Hydrological and other data are often far from complete,
  - Reliability is usually not perfect,
  - They can be analyzed in different ways, resulting in slightly or very different outcomes
  - An adequate a priori definition of flood inundation model parameters is very difficult
- Satellite data
  - Complementary approach to flood modeling
  - Continuous, cost-effective, man-independent observations





### Existing Approaches: Flood Hazard Mapping

• Flood hazard map based on multi-algorithm ensembles [Schumann, G. and Di Baldassarre, G. (2010) 'The direct use of radar satellites for event-specific flood risk mapping', Remote Sensing Letters, 1: 2, 75 — 84]



$$F2 = \frac{\sum_{i=1}^{n} P_i^{D_1 M_1} - \sum_{i=1}^{n} P_i^{D_0 M_1}}{\sum_{i=1}^{n} P_i^{D_1 M_1} + \sum_{i=1}^{n} P_i^{D_0 M_1} + \sum_{i=1}^{n} P_i^{D_1 M_0}}$$

$$PI_{i} = \frac{\sum_{j=1}^{5} \omega_{j} (P_{j,SAR})_{i} + \sum_{k=1}^{5} \omega_{k} (P_{k,ASAR})_{i}}{\sum_{j=1}^{5} \omega_{j} + \sum_{k=1}^{5} \omega_{k}}$$

the weight  $\omega j$  takes the value of  $F2^{D,M}$  with the ASAR image denoting the reference data set D and the SAR image being the data set assessed M.



#### Our approach



- Two methods proposed
  - The use of time-series of satellite data to flood hazard mapping
    - The use Landsat-5 and Landsat-7 data
    - Being used for Namibia
  - The use of neural network and SAR satellite data for event-specific flood hazard mapping
    - The use of ERS-2 and Envisat/ASAR data
    - Being used for Ukraine, preparing for Namibia





- Region: Katima Mulilo, Namibia
- Data
  - Satellite
    - Landsat-5/TM and Landsat-7/ETM+
      - 44 images
      - Time period
        - » 2000-2010
    - TRMM
      - Time period
        - » 1999-2010
  - Ground
    - Water level and water flow
    - Time period
      - 1943-1954 1965-2010





2011





10 year flood

Flow: 5746 m3/sec

50 year flood

Flow: 7093 m3/sec

100 year flood

Flow: 8993 m3/sec



|                 |    | year | flow, m3/sec |
|-----------------|----|------|--------------|
| 43 year flood ← | 1  | 1969 | 6817         |
| 30 year flood ← | 2  | 2009 | 6365         |
|                 | 3  | 1978 | 6251         |
|                 | 4  | 2010 | 5704         |
| <del></del>     | 5  | 1979 | 5675         |
|                 | 6  | 1976 | 5568         |
|                 | 7  | 2007 | 5564         |
|                 | 8  | 1975 | 5409         |
| -               | 9  | 1968 | 5312         |
| -               | 10 | 1966 | 5276         |

 $y = 2969.8x^3 - 9567.7x^2 + 11162x$ + 1181,8 R2 = 0.9907

x = log10(R)

Distribution of satellite data (Landsat 5, 7)
 path 174, row 072, during flood season















Flooded

Non-Flooded 
$$PI_{pixel} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{I}_{pixel=flooded}$$

No data (clouds, shadows, SLC-off)









#### **Dwelling Density**

Daily Report

Noven 22

#### Namibia Flood Dashboard

SensorWeb enabled for early flood warning

Configure
Layers
Upload Layer





## Event-specific flood hazard mapping



SAR/ERS-2, 2001, Ukraine









#### Deforestation monitoring in Ukraine



- Area: Lugansk oblast, Ukraine
- State Agricultural Inspection
- Estimated deforestation area: 2300 ha











# Sich-2 Earth Remote Sensing Satellite

 First Ukrainian ERS within new National Space Program

- Optical
  - VNIR (8 m),SWIR (40 m)
  - 48.8 km swath
  - Inclination angle: ± 30°
- Launched17 August 2011
  - Ukrainian Dnipro launcher





#### Conclusions

- Satellite data provide cost-effective approach to flood hazard mapping
- Integrated use of optical & radar data
- Should be exploited in conjunction with flood models to decrease errors and uncertainties



#### **Future actions**

- Integration of optical and SAR data for flood risk mapping
- Event-specific flood hazard mapping from SAR data
- To provide flood risks maps with vulnerability parameters such as:
  - Dwelling density (estimate number of people effected by floods)

